Loops
Last updated on 2024-12-16 | Edit this page
Estimated time: 50 minutes
Overview
Questions
- How can I perform the same actions on many different files?
Objectives
- Write a loop that applies one or more commands separately to each file in a set of files.
- Trace the values taken on by a loop variable during execution of the loop.
- Explain the difference between a variable’s name and its value.
- Explain why spaces and some punctuation characters shouldn’t be used in file names.
- Demonstrate how to see what commands have recently been executed.
- Re-run recently executed commands without retyping them.
HPCBio Notes
If you’re signed up for an HPCBio workshop, this episode/chapter is optional, but recommended reading. There is no recording available for this episode, so please follow along with the text-based lesson below.
Loops
Loops are a programming construct which allow us to repeat a command or set of commands for each item in a list. As such they are key to productivity improvements through automation. Similar to wildcards and tab completion, using loops also reduces the amount of typing required (and hence reduces the number of typing mistakes).
Suppose we have several hundred genome data files named
basilisk.dat
, minotaur.dat
, and
unicorn.dat
. For this example, we’ll use the
exercise-data/creatures
directory which only has three
example files, but the principles can be applied to many many more files
at once.
The structure of these files is the same: the common name, classification, and updated date are presented on the first three lines, with DNA sequences on the following lines. Let’s look at the files:
We would like to print out the classification for each species, which
is given on the second line of each file. For each file, we would need
to execute the command head -n 2
and pipe this to
tail -n 1
. We’ll use a loop to solve this problem, but
first let’s look at the general form of a loop, using the pseudo-code
below:
BASH
# The word "for" indicates the start of a "For-loop" command
for thing in list_of_things
#The word "do" indicates the start of job execution list
do
# Indentation within the loop is not required, but aids legibility
operation_using/command $thing
# The word "done" indicates the end of a loop
done
and we can apply this to our example like this:
BASH
$ for filename in basilisk.dat minotaur.dat unicorn.dat
> do
> echo $filename
> head -n 2 $filename | tail -n 1
> done
OUTPUT
basilisk.dat
CLASSIFICATION: basiliscus vulgaris
minotaur.dat
CLASSIFICATION: bos hominus
unicorn.dat
CLASSIFICATION: equus monoceros
Follow the Prompt
The shell prompt changes from $
to >
and
back again as we were typing in our loop. The second prompt,
>
, is different to remind us that we haven’t finished
typing a complete command yet. A semicolon, ;
, can be used
to separate two commands written on a single line.
When the shell sees the keyword for
, it knows to repeat
a command (or group of commands) once for each item in a list. Each time
the loop runs (called an iteration), an item in the list is assigned in
sequence to the variable, and the commands inside the
loop are executed, before moving on to the next item in the list. Inside
the loop, we call for the variable’s value by putting $
in
front of it. The $
tells the shell interpreter to treat the
variable as a variable name and substitute its value in its place,
rather than treat it as text or an external command.
In this example, the list is three filenames:
basilisk.dat
, minotaur.dat
, and
unicorn.dat
. Each time the loop iterates, we first use
echo
to print the value that the variable
$filename
currently holds. This is not necessary for the
result, but beneficial for us here to have an easier time to follow
along. Next, we will run the head
command on the file
currently referred to by $filename
. The first time through
the loop, $filename
is basilisk.dat
. The
interpreter runs the command head
on
basilisk.dat
and pipes the first two lines to the
tail
command, which then prints the second line of
basilisk.dat
. For the second iteration,
$filename
becomes minotaur.dat
. This time, the
shell runs head
on minotaur.dat
and pipes the
first two lines to the tail
command, which then prints the
second line of minotaur.dat
. For the third iteration,
$filename
becomes unicorn.dat
, so the shell
runs the head
command on that file, and tail
on the output of that. Since the list was only three items, the shell
exits the for
loop.
Same Symbols, Different Meanings
Here we see >
being used as a shell prompt, whereas
>
is also used to redirect output. Similarly,
$
is used as a shell prompt, but, as we saw earlier, it is
also used to ask the shell to get the value of a variable.
If the shell prints >
or $
then
it expects you to type something, and the symbol is a prompt.
If you type >
or $
yourself, it
is an instruction from you that the shell should redirect output or get
the value of a variable.
When using variables it is also possible to put the names into curly
braces to clearly delimit the variable name: $filename
is
equivalent to ${filename}
, but is different from
${file}name
. You may find this notation in other people’s
programs.
We have called the variable in this loop filename
in
order to make its purpose clearer to human readers. The shell itself
doesn’t care what the variable is called; if we wrote this loop as:
or:
BASH
$ for temperature in basilisk.dat minotaur.dat unicorn.dat
> do
> head -n 2 $temperature | tail -n 1
> done
it would work exactly the same way. Don’t do this. Programs
are only useful if people can understand them, so meaningless names
(like x
) or misleading names (like
temperature
) increase the odds that the program won’t do
what its readers think it does.
In the above examples, the variables (thing
,
filename
, x
and temperature
)
could have been given any other name, as long as it is meaningful to
both the person writing the code and the person reading it.
Note also that loops can be used for other things than filenames, like a list of numbers or a subset of data.
Write your own loop
How would you write a loop that echoes all 10 numbers from 0 to 9?
Variables in Loops
This exercise refers to the
shell-lesson-data/exercise-data/alkanes
directory.
ls *.pdb
gives the following output:
OUTPUT
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
What is the output of the following code?
Now, what is the output of the following code?
Why do these two loops give different outputs?
The first code block gives the same output on each iteration through
the loop. Bash expands the wildcard *.pdb
within the loop
body (as well as before the loop starts) to match all files ending in
.pdb
and then lists them using ls
. The
expanded loop would look like this:
BASH
$ for datafile in cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
> do
> ls cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
> done
OUTPUT
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
cubane.pdb ethane.pdb methane.pdb octane.pdb pentane.pdb propane.pdb
The second code block lists a different file on each loop iteration.
The value of the datafile
variable is evaluated using
$datafile
, and then listed using ls
.
OUTPUT
cubane.pdb
ethane.pdb
methane.pdb
octane.pdb
pentane.pdb
propane.pdb
Limiting Sets of Files
4 is the correct answer. *
matches zero or more
characters, so any file name starting with the letter c, followed by
zero or more other characters will be matched.
Limiting Sets of Files (continued)
How would the output differ from using this command instead?
- The same files would be listed.
- All the files are listed this time.
- No files are listed this time.
- The files
cubane.pdb
andoctane.pdb
will be listed. - Only the file
octane.pdb
will be listed.
4 is the correct answer. *
matches zero or more
characters, so a file name with zero or more characters before a letter
c and zero or more characters after the letter c will be matched.
Saving to a File in a Loop - Part One
In the shell-lesson-data/exercise-data/alkanes
directory, what is the effect of this loop?
- Prints
cubane.pdb
,ethane.pdb
,methane.pdb
,octane.pdb
,pentane.pdb
andpropane.pdb
, and the text frompropane.pdb
will be saved to a file calledalkanes.pdb
. - Prints
cubane.pdb
,ethane.pdb
, andmethane.pdb
, and the text from all three files would be concatenated and saved to a file calledalkanes.pdb
. - Prints
cubane.pdb
,ethane.pdb
,methane.pdb
,octane.pdb
, andpentane.pdb
, and the text frompropane.pdb
will be saved to a file calledalkanes.pdb
. - None of the above.
- The text from each file in turn gets written to the
alkanes.pdb
file. However, the file gets overwritten on each loop iteration, so the final content ofalkanes.pdb
is the text from thepropane.pdb
file.
Saving to a File in a Loop - Part Two
Also in the shell-lesson-data/exercise-data/alkanes
directory, what would be the output of the following loop?
- All of the text from
cubane.pdb
,ethane.pdb
,methane.pdb
,octane.pdb
, andpentane.pdb
would be concatenated and saved to a file calledall.pdb
. - The text from
ethane.pdb
will be saved to a file calledall.pdb
. - All of the text from
cubane.pdb
,ethane.pdb
,methane.pdb
,octane.pdb
,pentane.pdb
andpropane.pdb
would be concatenated and saved to a file calledall.pdb
. - All of the text from
cubane.pdb
,ethane.pdb
,methane.pdb
,octane.pdb
,pentane.pdb
andpropane.pdb
would be printed to the screen and saved to a file calledall.pdb
.
3 is the correct answer. >>
appends to a file,
rather than overwriting it with the redirected output from a command.
Given the output from the cat
command has been redirected,
nothing is printed to the screen.
Let’s continue with our example in the
shell-lesson-data/exercise-data/creatures
directory. Here’s
a slightly more complicated loop:
The shell starts by expanding *.dat
to create the list
of files it will process. The loop body then executes
two commands for each of those files. The first command,
echo
, prints its command-line arguments to standard output.
For example:
prints:
OUTPUT
hello there
In this case, since the shell expands $filename
to be
the name of a file, echo $filename
prints the name of the
file. Note that we can’t write this as:
because then the first time through the loop, when
$filename
expanded to basilisk.dat
, the shell
would try to run basilisk.dat
as a program. Finally, the
head
and tail
combination selects lines 81-100
from whatever file is being processed (assuming the file has at least
100 lines).
Spaces in Names
Spaces are used to separate the elements of the list that we are going to loop over. If one of those elements contains a space character, we need to surround it with quotes, and do the same thing to our loop variable. Suppose our data files are named:
red dragon.dat
purple unicorn.dat
To loop over these files, we would need to add double quotes like so:
BASH
$ for filename in "red dragon.dat" "purple unicorn.dat"
> do
> head -n 100 "$filename" | tail -n 20
> done
It is simpler to avoid using spaces (or other special characters) in filenames.
The files above don’t exist, so if we run the above code, the
head
command will be unable to find them; however, the
error message returned will show the name of the files it is
expecting:
ERROR
head: cannot open ‘red dragon.dat' for reading: No such file or directory
head: cannot open ‘purple unicorn.dat' for reading: No such file or directory
Try removing the quotes around $filename
in the loop
above to see the effect of the quote marks on spaces. Note that we get a
result from the loop command for unicorn.dat when we run this code in
the creatures
directory:
OUTPUT
head: cannot open ‘red' for reading: No such file or directory
head: cannot open ‘dragon.dat' for reading: No such file or directory
head: cannot open ‘purple' for reading: No such file or directory
CGGTACCGAA
AAGGGTCGCG
CAAGTGTTCC
...
We would like to modify each of the files in
shell-lesson-data/exercise-data/creatures
, but also save a
version of the original files. We want to copy the original files to new
files named original-basilisk.dat
and
original-unicorn.dat
, for example. We can’t use:
because that would expand to:
This wouldn’t back up our files, instead we get an error:
ERROR
cp: target `original-*.dat' is not a directory
This problem arises when cp
receives more than two
inputs. When this happens, it expects the last input to be a directory
where it can copy all the files it was passed. Since there is no
directory named original-*.dat
in the
creatures
directory, we get an error.
Instead, we can use a loop:
This loop runs the cp
command once for each filename.
The first time, when $filename
expands to
basilisk.dat
, the shell executes:
The second time, the command is:
The third and last time, the command is:
Since the cp
command does not normally produce any
output, it’s hard to check that the loop is working correctly. However,
we learned earlier how to print strings using echo
, and we
can modify the loop to use echo
to print our commands
without actually executing them. As such we can check what commands
would be run in the unmodified loop.
The following diagram shows what happens when the modified loop is
executed and demonstrates how the judicious use of echo
is
a good debugging technique.
Nelle’s Pipeline: Processing Files
Nelle is now ready to process her data files using
goostats.sh
— a shell script written by her supervisor.
This calculates some statistics from a protein sample file and takes two
arguments:
- an input file (containing the raw data)
- an output file (to store the calculated statistics)
Since she’s still learning how to use the shell, she decides to build
up the required commands in stages. Her first step is to make sure that
she can select the right input files — remember, these are ones whose
names end in ‘A’ or ‘B’, rather than ‘Z’. Moving to the
north-pacific-gyre
directory, Nelle types:
BASH
$ cd
$ cd Desktop/shell-lesson-data/north-pacific-gyre
$ for datafile in NENE*A.txt NENE*B.txt
> do
> echo $datafile
> done
OUTPUT
NENE01729A.txt
NENE01736A.txt
NENE01751A.txt
...
NENE02040B.txt
NENE02043B.txt
Her next step is to decide what to call the files that the
goostats.sh
analysis program will create. Prefixing each
input file’s name with ‘stats’ seems simple, so she modifies her loop to
do that:
OUTPUT
NENE01729A.txt stats-NENE01729A.txt
NENE01736A.txt stats-NENE01729A.txt
NENE01751A.txt stats-NENE01729A.txt
...
NENE02040B.txt stats-NENE02040B.txt
NENE02043B.txt stats-NENE02043B.txt
She hasn’t actually run goostats.sh
yet, but now she’s
sure she can select the right files and generate the right output
filenames.
Typing in commands over and over again is becoming tedious, though, and Nelle is worried about making mistakes, so instead of re-entering her loop, she presses ↑. In response, the shell redisplays the whole loop on one line (using semi-colons to separate the pieces):
Using the ←, Nelle navigates to the echo
command and changes it to bash goostats.sh
:
When she presses Enter, the shell runs the modified command. However, nothing appears to happen — there is no output. After a moment, Nelle realizes that since her script doesn’t print anything to the screen any longer, she has no idea whether it is running, much less how quickly. She kills the running command by typing Ctrl+C, uses ↑ to repeat the command, and edits it to read:
BASH
$ for datafile in NENE*A.txt NENE*B.txt; do echo $datafile;
bash goostats.sh $datafile stats-$datafile; done
Beginning and End
We can move to the beginning of a line in the shell by typing Ctrl+A and to the end using Ctrl+E.
When she runs her program now, it produces one line of output every five seconds or so:
OUTPUT
NENE01729A.txt
NENE01736A.txt
NENE01751A.txt
...
1518 times 5 seconds, divided by 60, tells her that her script will
take about two hours to run. As a final check, she opens another
terminal window, goes into north-pacific-gyre
, and uses
cat stats-NENE01729B.txt
to examine one of the output
files. It looks good, so she decides to get some coffee and catch up on
her reading.
Those Who Know History Can Choose to Repeat It
Another way to repeat previous work is to use the
history
command to get a list of the last few hundred
commands that have been executed, and then to use !123
(where ‘123’ is replaced by the command number) to repeat one of those
commands. For example, if Nelle types this:
OUTPUT
456 for datafile in NENE*A.txt NENE*B.txt; do echo $datafile stats-$datafile; done
457 for datafile in NENE*A.txt NENE*B.txt; do echo $datafile stats-$datafile; done
458 for datafile in NENE*A.txt NENE*B.txt; do bash goostats.sh $datafile stats-$datafile; done
459 for datafile in NENE*A.txt NENE*B.txt; do echo $datafile; bash goostats.sh $datafile
stats-$datafile; done
460 history | tail -n 5
then she can re-run goostats.sh
on the files simply by
typing !459
.
Other History Commands
There are a number of other shortcut commands for getting at the history.
- Ctrl+R enters a history search mode ‘reverse-i-search’ and finds the most recent command in your history that matches the text you enter next. Press Ctrl+R one or more additional times to search for earlier matches. You can then use the left and right arrow keys to choose that line and edit it then hit Return to run the command.
-
!!
retrieves the immediately preceding command (you may or may not find this more convenient than using ↑) -
!$
retrieves the last word of the last command. That’s useful more often than you might expect: afterbash goostats.sh NENE01729B.txt stats-NENE01729B.txt
, you can typeless !$
to look at the filestats-NENE01729B.txt
, which is quicker than doing ↑ and editing the command-line.
Doing a Dry Run
A loop is a way to do many things at once — or to make many mistakes
at once if it does the wrong thing. One way to check what a loop
would do is to echo
the commands it would run
instead of actually running them.
Suppose we want to preview the commands the following loop will execute without actually running those commands:
What is the difference between the two loops below, and which one would we want to run?
The second version is the one we want to run. This prints to screen
everything enclosed in the quote marks, expanding the loop variable name
because we have prefixed it with a dollar sign. It also does
not modify nor create the file all.pdb
, as the
>>
is treated literally as part of a string rather
than as a redirection instruction.
The first version appends the output from the command
echo cat $datafile
to the file, all.pdb
. This
file will just contain the list; cat cubane.pdb
,
cat ethane.pdb
, cat methane.pdb
etc.
Try both versions for yourself to see the output! Be sure to open the
all.pdb
file to view its contents.
Nested Loops
Suppose we want to set up a directory structure to organize some experiments measuring reaction rate constants with different compounds and different temperatures. What would be the result of the following code:
We have a nested loop, i.e. contained within another loop, so for each species in the outer loop, the inner loop (the nested loop) iterates over the list of temperatures, and creates a new directory for each combination.
Try running the code for yourself to see which directories are created!
Key Points
- A
for
loop repeats commands once for every thing in a list. - Every
for
loop needs a variable to refer to the thing it is currently operating on. - Use
$name
to expand a variable (i.e., get its value).${name}
can also be used. - Do not use spaces, quotes, or wildcard characters such as ‘*’ or ‘?’ in filenames, as it complicates variable expansion.
- Give files consistent names that are easy to match with wildcard patterns to make it easy to select them for looping.
- Use the up-arrow key to scroll up through previous commands to edit and repeat them.
- Use Ctrl+R to search through the previously entered commands.
- Use
history
to display recent commands, and![number]
to repeat a command by number.